131 research outputs found

    Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj

    Full text link
    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model, which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion, accepted for publication in JHE

    New Physics Models of Direct CP Violation in Charm Decays

    Get PDF
    In view of the recent LHCb measurement of Delta A_CP, the difference between the time-integrated CP asymmetries in D --> K+K- and D --> pi+pi- decays, we perform a comparative study of the possible impact of New Physics degrees of freedom on the direct CP asymmetries in singly Cabibbo suppressed D meson decays. We systematically discuss scenarios with a minimal set of new degrees of freedom that have renormalizable couplings to the SM particles and that are heavy enough such that their effects on the D meson decays can be described by local operators. We take into account both constraints from low energy flavor observables, in particular D0-D0bar mixing, and from direct searches. While models that explain the large measured value for Delta A_CP with chirally enhanced chromomagnetic penguins are least constrained, we identify a few viable models that contribute to the D meson decays at tree level or through loop induced QCD penguins. We emphasize that such models motivate direct searches at the LHC.Comment: 24 pages, 13 figures. v2: typos corrected, reference added, published versio

    The Repertoire and Dynamics of Evolutionary Adaptations to Controlled Nutrient-Limited Environments in Yeast

    Get PDF
    The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based techniques to characterize genetic changes—including point mutations, structural changes, and insertion variation—that resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in either glucose, sulfate, or phosphate-limited chemostats for ∼200 generations. We identified frequent genomic amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely global patterns of gene expression, and to increases in fitness by 5–50%. We found that the spectrum of available mutations in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive mutations (e.g., transporter gene amplifications) to known features of the relevant metabolic pathways, but many of the mutations pointed to genes not previously associated with the relevant physiology. Thus, in addition to answering basic mechanistic questions about evolutionary mechanisms, our work suggests that experimental evolution can also shed light on the function and regulation of individual metabolic pathways

    Does Cognitive Impairment Explain Behavioral and Social Problems of Children with Neurofibromatosis Type 1?

    Get PDF
    Thirty NF1-patients (mean age 11.7 years, SD = 3.3) and 30 healthy controls (mean age 12.5 years, SD = 3.1) were assessed on social skills, autistic traits, hyperactivity-inattention, emotional problems, conduct problems, and peer problems. Cognitive control, information processing speed, and social information processing were measured using 5 computer tasks. GLM analyses of variance showed significant group differences, to the disadvantage of NF1-patients, on all measures of behavior, social functioning and cognition. General cognitive ability (a composite score of processing speed, social information processing, and cognitive control) accounted for group differences in emotional problems, whereas social information processing accounted for group differences in conduct problems. Although reductions were observed for group differences in other aspects of behavior and social functioning after control for (specific) cognitive abilities, group differences remained evident. Training of cognitive abilities may help reducing certain social and behavioral problems of children with NF1, but further refinement regarding associations between specific aspects of cognition and specific social and behavioral outcomes is required

    Amplification of a Zygosaccharomyces bailii DNA Segment in Wine Yeast Genomes by Extrachromosomal Circular DNA Formation

    Get PDF
    We recently described the presence of large chromosomal segments resulting from independent horizontal gene transfer (HGT) events in the genome of Saccharomyces cerevisiae strains, mostly of wine origin. We report here evidence for the amplification of one of these segments, a 17 kb DNA segment from Zygosaccharomyces bailii, in the genome of S. cerevisiae strains. The copy number, organization and location of this region differ considerably between strains, indicating that the insertions are independent and that they are post-HGT events. We identified eight different forms in 28 S. cerevisiae strains, mostly of wine origin, with up to four different copies in a single strain. The organization of these forms and the identification of an autonomously replicating sequence functional in S. cerevisiae, strongly suggest that an extrachromosomal circular DNA (eccDNA) molecule serves as an intermediate in the amplification of the Z. bailii region in yeast genomes. We found little or no sequence similarity at the breakpoint regions, suggesting that the insertions may be mediated by nonhomologous recombination. The diversity between these regions in S. cerevisiae represents roughly one third the divergence among the genomes of wine strains, which confirms the recent origin of this event, posterior to the start of wine strain expansion. This is the first report of a circle-based mechanism for the expansion of a DNA segment, mediated by nonhomologous recombination, in natural yeast populations

    Genomic Structure of and Genome-Wide Recombination in the Saccharomyces cerevisiae S288C Progenitor Isolate EM93

    Get PDF
    The diploid isolate EM93 is the main ancestor to the widely used Saccharomyces cerevisiae haploid laboratory strain, S288C. In this study, we generate a high-resolution overview of the genetic differences between EM93 and S288C. We show that EM93 is heterozygous for >45,000 polymorphisms, including large sequence polymorphisms, such as deletions and a Saccharomyces paradoxus introgression. We also find that many large sequence polymorphisms (LSPs) are associated with Ty-elements and sub-telomeric regions. We identified 2,965 genetic markers, which we then used to genotype 120 EM93 tetrads. In addition to deducing the structures of all EM93 chromosomes, we estimate that the average EM93 meiosis produces 144 detectable recombination events, consisting of 87 crossover and 31 non-crossover gene conversion events. Of the 50 polymorphisms showing the highest levels of non-crossover gene conversions, only three deviated from parity, all of which were near heterozygous LSPs. We find that non-telomeric heterozygous LSPs significantly reduce meiotic recombination in adjacent intervals, while sub-telomeric LSPs have no discernable effect on recombination. We identified 203 recombination hotspots, relatively few of which are hot for both non-crossover gene conversions and crossovers. Strikingly, we find that recombination hotspots show limited conservation. Some novel hotspots are found adjacent to heterozygous LSPs that eliminate other hotspots, suggesting that hotspots may appear and disappear relatively rapidly

    Implementing the LifeSkills Training drug prevention program: factors related to implementation fidelity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Widespread replication of effective prevention programs is unlikely to affect the incidence of adolescent delinquency, violent crime, and substance use until the quality of implementation of these programs by community-based organizations can be assured.</p> <p>Methods</p> <p>This paper presents the results of a process evaluation employing qualitative and quantitative methods to assess the extent to which 432 schools in 105 sites implemented the LifeSkills Training (LST) drug prevention program with fidelity. Regression analysis was used to examine factors influencing four dimensions of fidelity: adherence, dosage, quality of delivery, and student responsiveness.</p> <p>Results</p> <p>Although most sites faced common barriers, such as finding room in the school schedule for the program, gaining full support from key participants (i.e., site coordinators, principals, and LST teachers), ensuring teacher participation in training workshops, and classroom management difficulties, most schools involved in the project implemented LST with very high levels of fidelity. Across sites, 86% of program objectives and activities required in the three-year curriculum were delivered to students. Moreover, teachers were observed using all four recommended teaching practices, and 71% of instructors taught all the required LST lessons. Multivariate analyses found that highly rated LST program characteristics and better student behavior were significantly related to a greater proportion of material taught by teachers (adherence). Instructors who rated the LST program characteristics as ideal were more likely to teach all lessons (dosage). Student behavior and use of interactive teaching techniques (quality of delivery) were positively related. No variables were related to student participation (student responsiveness).</p> <p>Conclusion</p> <p>Although difficult, high implementation fidelity by community-based organizations can be achieved. This study suggests some important factors that organizations should consider to ensure fidelity, such as selecting programs with features that minimize complexity while maximizing flexibility. Time constraints in the classroom should be considered when choosing a program. Student behavior also influences program delivery, so schools should train teachers in the use of classroom management skills. This project involved comprehensive program monitoring and technical assistance that likely facilitated the identification and resolution of problems and contributed to the overall high quality of implementation. Schools should recognize the importance of training and technical assistance to ensure quality program delivery.</p

    A Randomized Controlled Study of Parent-assisted Children’s Friendship Training with Children having Autism Spectrum Disorders

    Get PDF
    This study evaluated Children’s Friendship Training (CFT), a manualized parent-assisted intervention to improve social skills among second to fifth grade children with autism spectrum disorders. Comparison was made with a delayed treatment control group (DTC). Targeted skills included conversational skills, peer entry skills, developing friendship networks, good sportsmanship, good host behavior during play dates, and handling teasing. At post-testing, the CFT group was superior to the DTC group on parent measures of social skill and play date behavior, and child measures of popularity and loneliness, At 3-month follow-up, parent measures showed significant improvement from baseline. Post-hoc analysis indicated more than 87% of children receiving CFT showed reliable change on at least one measure at post-test and 66.7% after 3 months follow-up

    Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection

    Get PDF
    Background Staphylococcus aureus (S. aureus) is one of the primary causes of bone infections which are often chronic and difficult to eradicate. Bacteria like S. aureus may survive upon internalization in cells and may be responsible for chronic and recurrent infections. In this study, we compared the responses of a phagocytic cell (i.e. macrophage) to a non-phagocytic cell (i.e. osteoblast) upon S. aureus internalization. Results We found that upon internalization, S. aureus could survive for up to 5 and 7 days within macrophages and osteoblasts, respectively. Significantly more S. aureus was internalized in macrophages compared to osteoblasts and a significantly higher (100 fold) level of live intracellular S. aureus was detected in macrophages compared to osteoblasts. However, the percentage of S. aureus survival after infection was significantly lower in macrophages compared to osteoblasts at post-infection days 1–6. Interestingly, macrophages had relatively lower viability in shorter infection time periods (i.e. 0.5-4 h; significant at 2 h) but higher viability in longer infection time periods (i.e. 6–8 h; significant at 8 h) compared to osteoblasts. In addition, S. aureusinfection led to significant changes in reactive oxygen species production in both macrophages and osteoblasts. Moreover, infected osteoblasts had significantly lower alkaline phosphatase activity at post-infection day 7 and infected macrophages had higher phagocytosis activity compared to non-infected cells. Conclusions S. aureus was found to internalize and survive within osteoblasts and macrophages and led to differential responses between osteoblasts and macrophages. These findings may assist in evaluation of the pathogenesis of chronic and recurrent infections which may be related to the intracellular persistence of bacteria within host cells
    corecore